
GJK Implementation
Using GJK for 3D collision prediction



Minkowski difference

● The difference between two shapes
● Imagine shapes A and B as sets of points:

○ Point a ∈ (A)
○ Point b ∈ (B)

● Represented as a new shape, or set A-B
○ Point ab ∈ (A-B), if a ∈ (A) and b ∈ (B)

● If the origin is contained in the set A-B, the two shapes are overlapping
○ a - b = 0, a = b; Both sets contain the same point
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Infinite points and Convex Hulls

The number of points in a line between any two points is infinite, a computer 
cannot evaluate that many points.
A 2D polygon has an even larger
infinity of points, and 3D larger still…
Way too many points to evaluate every single one!

We can solve this by generating a ‘convex hull’: calculate the points only on the 
outside of our Minkowski difference
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Convex Hull

The convex hull is the set of the exterior points on our Minkowski difference

A

B

Each individual point on the convex hull is 
calculated from the farthest points in each 
shape, in any given direction. B-A



Convex Hull

The support point at position (x = 8, y = -2) is the difference between the point 
inside A in direction vector -d, and the point inside B, along direction vector d.
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Support Points

To calculate the farthest point along vector d inside shape A, we simply check the 
dot product of every point in A and d. Calculating the dot product isn’t very 
expensive. a = [a1, a2, a3, …, an]

b = [b1, b2, b3, …, bn]

a·b = a1b1  + a2b2 + … + anbn

For 2D vectors, we have 2n multiplications, and 2(n - 1) additions, where n is the 
number of points in the shape

In 3D, this is 3n multiplications, and 3(n - 1) additions, or simply O(n)



Simplex

A simplex is the simplest, or smallest number of points, that can be used to 
represent some ‘volume’.
For 1D, we need at least two points to represent a measurable amount of space -- 
our line.
In 2D, we add another point, giving us a triangle with area.
For 3D, it is the same; adding a fourth point creates a tetrahedron, and we have 
volume.

The number of points required in N-dimensional space is N+1. We aren’t going to 
be looking at any dimensions past 3D for our purposes.



Simplex and Timesaving

Remember: to check for a collison, we see if our Minkowski difference contains the 
origin. In 2D, a line does not contain any space (area), being infinitely small along one 
axis. Our origin might even appear to be along the line, but it can’t be ‘inside’ the line in 
2D space. Once we have area, we can verify if the origin (or any other point) is inside.

Is the point on the top or 
bottom of this line?
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Simplex and Timesaving

In other words, we need to at least have a simplex.

Any 3D polyhedron or 2D polygon can be broken into simplices… an infinite 
number of simplices. We should narrow that down...



Limiting Simplices

We can limit the possible simplices by only using points on our convex hull:

B-A
To limit the number of times we check, we want the 
largest simplex possible. Assuming that we only 
get points on our Minkowski difference as we pick 
directions, we should start by picking two points in 
opposite directions.
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Although the minkowski difference is already generated here, that is only for 
reference. Calculating the full Minkowski difference this way in real-time is 
expensive - we would have to check every single directional vector, which is an 
infinite set.



Encapsulate the Origin

B-A

The next point should be the most likely point to 
make our simplex contain the origin. That gives us 
two criteria to look for:
1. Maximizes the area inside the simplex
2. ‘Moves’ towards the origin (at least one point 

added to our set is closer to the origin than the closest 
point from the previous iteration.)
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To maximize the area of our simplex, we simply search for a new point that is 
perpendicular to our existing line. We can take one of our two possible 
‘normals’.
Only one of these actually moves towards the origin, so we want to search 
along that one.



Choosing a Normal

B-A

In this case, our origin is inside the ‘upwards’ normal, so we will search in that 
direction
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B-A

Checking the Origin Mathematically

We can calculate whether or not 
the origin is inside any area by 
evaluating the sign of the 
respective normal, dotted with any 
point on that edge.
If all values are negative, the 
origin is not inside any of the 
regions, instead, it must be inside 
the shape.
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O ∈ AB
if nAB · - A > 0;
O ∈ AC
if nAC · - A > 0;



Choosing Next Point

B-A
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We only want to keep one line 
here - the line closest to the 
origin. To be more accurate, we 
want the line that contains the 
point closest to the origin.
Visually, it is clearly line AB, but 
mathematically it is a little 
unclear.
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Choosing Next Point
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We can instead ‘map’ the line we 
want to check, AB, and the 
origin, O, to a new axis.
To avoid calculating the distance 
from the origin to every single 
point in our line (infinite), we can 
once again use the normal of that 
line - reducing the line to a single 
point!
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A and B always have the same value here, 
(when projected onto the normal) so we can use 
either one
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Choosing Next Point
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The position on our line is a 
single value, or a scalar. To 
calculate it, we evaluate the 
scalar product, which is also 
known as the dot product.
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O will be always become 0 when dotted 
with another vector. Our normal faces away 
from AB, so the dot product of A or B with 
nAB will be negative. We can just flip the 
sign

Distance = -A · nAB

Flipped from the last slide
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Removing a Point
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In this case, only the dot product 
of normal nAB and A is positive, 
so the point closest to the origin 
must be along line AB - we can’t 
remove either point, so we 
instead remove point C.
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We don’t actually have to check if normal 
nBC faces the origin, because we added 
point A by looking towards the origin. This 
would make either AB or AC closer to the 
origin. Remember that we are trying to find 
a theoretical point on these lines.
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Checking Points

B-A
(2, -1)
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OWe can search for a support 
point along the normal we 
already calculated, and rename 
our points so that A is our newest 
point.
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Exit Conditions

B-A
(2, -1)
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OFollowing the rules we 
established before, we continue 
the process and remove point C.
However, when we search for a 
new point along normal nAB, 
depending on how our floating 
point numbers round, we will find 
either point A or B. Since they 
are both in the simplex, we know 
that it cannot get any closer to 
the origin.
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Distance Calculations

B-A
(2, -1)

B

OWe know the simplex does not 
contain the origin, so the shapes 
do not overlap.
However, we can determine the 
minimum distance to the origin.

(4, 1)
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The distance value we calculated in the last step is the minimum distance from the 
origin to any points on the line, continuing forever. Importantly, that point is not 
actually inside the Minkowski difference. The closest point is one that is both on the 
infinite line AB and inside shape B - A.



Distance Calculations

B-A
(2, -1)
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OWe can use the same method 
that we used to find the distance 
from line AB and O, to find 
whether or not the closest point 
we found in the previous step is 
part of our simplex.

Using the dot product to get our 
scalar values, we can imagine 
them as being in 1D:

(4, 1)
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Here, we can use simple comparison 
to see that O is not contained within 
AB, but B is closer than O.



B-A

Since point B was the closest to 
the origin on our line, B is also 
the closest to our origin. The 
Vector BO indicates both the 
direction and distance from B - A 
to the origin.
This is also the shortest distance 
between our original shapes

Final Result
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Edge Cases

What if the two shapes are identical? What happens to the points on our 
Minkowski difference?

What if the Minkowski difference is a line?



Implementing GJK for CCD

A

d

v

v’

d is the resulting Vector from our GJK pass

We can advance shape A until it reaches our 
collision normal, and then continue

The distance we can travel 
before reaching this collision 
normal is v’.

v’ = (d ∙ vN) vN



Handling Multiple Shapes

A

d1

v

v’1

v’1 = (d1 ∙ vN) vN

v’2 = (d2 ∙ vN) vN

v’ = Min(|v’1|, |v’2|, …, |v’n|)

d2

v’2

If there are multiple shapes, we 
must calculate the minimum 
conservative advancement 
value, and move that distance.



Handling Multiple Shapes

A

d1

v

v’2 would become zero, 
because the expression: (d2 
∙ vN), evaluates to 0, so we 
should catch this case and 
ignore it.

If (d2 ∙ vN) ≤ 0; ignore

After advancing, we recalculate 
the distance between all of our 
shapes again.

d2

v’1



Handling Multiple Shapes

A

d1

|d1| is almost 0, depending 
on how our floating-point 
numbers are handled. 
It’s important that the GJK 
algorithm can return both 
the collision distance and 
direction separately, 
because we may run into 
problems if we try to 
normalize a vector of 0 
length

Now that our shape has actually 
collided (|d1| ≈ 0), we can stop 
advancing, even though |v| ≉ 0.

Unless we want to start 
calculating a deflection...

d2

v



Reflections

A

dN
Typically, our object would 
bounce off of the other one (if the 
collision is perfectly elastic and there is 
no friction.)

This would be fine if we were 
simulating all forces, but this 
isn’t the case right now.

With simpler dynamics, we can 
assume that the initial force 
would be constantly applied, 
that is, our object would prefer 
to move in direction vN 
whenever possible.

v

A



Reflections

A

dN
If we assume that whatever 
force is being applied constantly 
(such as if shape A is the player 
in a platformer), we can 
approximate how shape A 
would slide.

vr is the remaining velocity 
component after our 
advancement, so we can simply 
subtract the component of our 
velocity that would go ‘into’ the 
wall.

v

A
vr’ = vr - (vr ∙ dN)dN

vr

comp(vr, dN)vr’



Ghost collisions

A

To prevent floating point errors, 
physics engines often separate 
shapes by a thin ‘skin’. When 
using CCD, this skin can cause 
our collision normal to be at a 
slight angle.

-vr
v

This strategy would launch shape A 
slightly into the air, even though the 
surface of the two floor shapes is 
continuous.

A



A

Ghost collisions

A

We would have to calculate 
many advancements, just to 
find out that our collision normal 
will eventually be perpendicular 
to our velocity...

-vr


