
GJK Implementation
Using GJK for 3D collision prediction

Minkowski difference

● The difference between two shapes
● Imagine shapes A and B as sets of points:

○ Point a ∈ (A)
○ Point b ∈ (B)

● Represented as a new shape, or set A-B
○ Point ab ∈ (A-B), if a ∈ (A) and b ∈ (B)

● If the origin is contained in the set A-B, the two shapes are overlapping
○ a - b = 0, a = b; Both sets contain the same point

A
B

(4, 1)

(4, -2)

(6, 1)

(6, -2) (8, -2)

(6, -1)

B-A

Minkowski Difference

(-2, 2)(-4, 2)

(-2, 1)(-4, 1)

(0, 0)

(2, 2)

(4, 0)

A

B

(6, 0)

(8, -1)(4, -1)(2, -1)

(2, -1)

Infinite points and Convex Hulls

The number of points in a line between any two points is infinite, a computer
cannot evaluate that many points.
A 2D polygon has an even larger
infinity of points, and 3D larger still…
Way too many points to evaluate every single one!

We can solve this by generating a ‘convex hull’: calculate the points only on the
outside of our Minkowski difference

(0, 0, 0) (1, 0, 0)

Convex Hull

The convex hull is the set of the exterior points on our Minkowski difference

A

B

Each individual point on the convex hull is
calculated from the farthest points in each
shape, in any given direction. B-A

Convex Hull

The support point at position (x = 8, y = -2) is the difference between the point
inside A in direction vector -d, and the point inside B, along direction vector d.

(8, -2)

B-A

(-4, 2)

(4, 0)

A
B

Support Points

To calculate the farthest point along vector d inside shape A, we simply check the
dot product of every point in A and d. Calculating the dot product isn’t very
expensive. a = [a1, a2, a3, …, an]

b = [b1, b2, b3, …, bn]

a·b = a1b1 + a2b2 + … + anbn

For 2D vectors, we have 2n multiplications, and 2(n - 1) additions, where n is the
number of points in the shape

In 3D, this is 3n multiplications, and 3(n - 1) additions, or simply O(n)

Simplex

A simplex is the simplest, or smallest number of points, that can be used to
represent some ‘volume’.
For 1D, we need at least two points to represent a measurable amount of space --
our line.
In 2D, we add another point, giving us a triangle with area.
For 3D, it is the same; adding a fourth point creates a tetrahedron, and we have
volume.

The number of points required in N-dimensional space is N+1. We aren’t going to
be looking at any dimensions past 3D for our purposes.

Simplex and Timesaving

Remember: to check for a collison, we see if our Minkowski difference contains the
origin. In 2D, a line does not contain any space (area), being infinitely small along one
axis. Our origin might even appear to be along the line, but it can’t be ‘inside’ the line in
2D space. Once we have area, we can verify if the origin (or any other point) is inside.

Is the point on the top or
bottom of this line?

(-1, 0) (1, 0)

Simplex and Timesaving

In other words, we need to at least have a simplex.

Any 3D polyhedron or 2D polygon can be broken into simplices… an infinite
number of simplices. We should narrow that down...

Limiting Simplices

We can limit the possible simplices by only using points on our convex hull:

B-A
To limit the number of times we check, we want the
largest simplex possible. Assuming that we only
get points on our Minkowski difference as we pick
directions, we should start by picking two points in
opposite directions.

(8, -2)

(2, -1)

Although the minkowski difference is already generated here, that is only for
reference. Calculating the full Minkowski difference this way in real-time is
expensive - we would have to check every single directional vector, which is an
infinite set.

Encapsulate the Origin

B-A

The next point should be the most likely point to
make our simplex contain the origin. That gives us
two criteria to look for:
1. Maximizes the area inside the simplex
2. ‘Moves’ towards the origin (at least one point

added to our set is closer to the origin than the closest
point from the previous iteration.)

(8, -2)

(2, -1)

To maximize the area of our simplex, we simply search for a new point that is
perpendicular to our existing line. We can take one of our two possible
‘normals’.
Only one of these actually moves towards the origin, so we want to search
along that one.

Choosing a Normal

B-A

In this case, our origin is inside the ‘upwards’ normal, so we will search in that
direction

(2, -1)

(6, 1)

(8, -2)

B-A

Checking the Origin Mathematically

We can calculate whether or not
the origin is inside any area by
evaluating the sign of the
respective normal, dotted with any
point on that edge.
If all values are negative, the
origin is not inside any of the
regions, instead, it must be inside
the shape.

(2, -1)

(6, 1)

(8, -2)

B

A

O

C

O ∈ AB
if nAB · - A > 0;
O ∈ AC
if nAC · - A > 0;

Choosing Next Point

B-A
(2, -1)

(6, 1)

(8, -2)

We only want to keep one line
here - the line closest to the
origin. To be more accurate, we
want the line that contains the
point closest to the origin.
Visually, it is clearly line AB, but
mathematically it is a little
unclear.

A

B

C

O

Choosing Next Point

(2, -1)

(6, 1)

(8, -2)

We can instead ‘map’ the line we
want to check, AB, and the
origin, O, to a new axis.
To avoid calculating the distance
from the origin to every single
point in our line (infinite), we can
once again use the normal of that
line - reducing the line to a single
point!

B

A

O

A

B

O

A and B always have the same value here,
(when projected onto the normal) so we can use
either one

C

Choosing Next Point

(2, -1)

(6, 1)

(8, -2)

The position on our line is a
single value, or a scalar. To
calculate it, we evaluate the
scalar product, which is also
known as the dot product.

B

A

O

A

B

O

O will be always become 0 when dotted
with another vector. Our normal faces away
from AB, so the dot product of A or B with
nAB will be negative. We can just flip the
sign

Distance = -A · nAB

Flipped from the last slide

C

Removing a Point

(2, -1)

(6, 1)

(8, -2)

In this case, only the dot product
of normal nAB and A is positive,
so the point closest to the origin
must be along line AB - we can’t
remove either point, so we
instead remove point C.

B

A

O

We don’t actually have to check if normal
nBC faces the origin, because we added
point A by looking towards the origin. This
would make either AB or AC closer to the
origin. Remember that we are trying to find
a theoretical point on these lines.

C

Checking Points

B-A
(2, -1)

B

(6, 1)

C

OWe can search for a support
point along the normal we
already calculated, and rename
our points so that A is our newest
point.

(4, 1)

A

Exit Conditions

B-A
(2, -1)

B

(6, 1)

C

OFollowing the rules we
established before, we continue
the process and remove point C.
However, when we search for a
new point along normal nAB,
depending on how our floating
point numbers round, we will find
either point A or B. Since they
are both in the simplex, we know
that it cannot get any closer to
the origin.

(4, 1)

A

Distance Calculations

B-A
(2, -1)

B

OWe know the simplex does not
contain the origin, so the shapes
do not overlap.
However, we can determine the
minimum distance to the origin.

(4, 1)

A

The distance value we calculated in the last step is the minimum distance from the
origin to any points on the line, continuing forever. Importantly, that point is not
actually inside the Minkowski difference. The closest point is one that is both on the
infinite line AB and inside shape B - A.

Distance Calculations

B-A
(2, -1)

B

OWe can use the same method
that we used to find the distance
from line AB and O, to find
whether or not the closest point
we found in the previous step is
part of our simplex.

Using the dot product to get our
scalar values, we can imagine
them as being in 1D:

(4, 1)

A

ABO

Here, we can use simple comparison
to see that O is not contained within
AB, but B is closer than O.

B-A

Since point B was the closest to
the origin on our line, B is also
the closest to our origin. The
Vector BO indicates both the
direction and distance from B - A
to the origin.
This is also the shortest distance
between our original shapes

Final Result

B

A

O

Edge Cases

What if the two shapes are identical? What happens to the points on our
Minkowski difference?

What if the Minkowski difference is a line?

Implementing GJK for CCD

A

d

v

v’

d is the resulting Vector from our GJK pass

We can advance shape A until it reaches our
collision normal, and then continue

The distance we can travel
before reaching this collision
normal is v’.

v’ = (d ∙ vN) vN

Handling Multiple Shapes

A

d1

v

v’1

v’1 = (d1 ∙ vN) vN

v’2 = (d2 ∙ vN) vN

v’ = Min(|v’1|, |v’2|, …, |v’n|)

d2

v’2

If there are multiple shapes, we
must calculate the minimum
conservative advancement
value, and move that distance.

Handling Multiple Shapes

A

d1

v

v’2 would become zero,
because the expression: (d2
∙ vN), evaluates to 0, so we
should catch this case and
ignore it.

If (d2 ∙ vN) ≤ 0; ignore

After advancing, we recalculate
the distance between all of our
shapes again.

d2

v’1

Handling Multiple Shapes

A

d1

|d1| is almost 0, depending
on how our floating-point
numbers are handled.
It’s important that the GJK
algorithm can return both
the collision distance and
direction separately,
because we may run into
problems if we try to
normalize a vector of 0
length

Now that our shape has actually
collided (|d1| ≈ 0), we can stop
advancing, even though |v| ≉ 0.

Unless we want to start
calculating a deflection...

d2

v

Reflections

A

dN
Typically, our object would
bounce off of the other one (if the
collision is perfectly elastic and there is
no friction.)

This would be fine if we were
simulating all forces, but this
isn’t the case right now.

With simpler dynamics, we can
assume that the initial force
would be constantly applied,
that is, our object would prefer
to move in direction vN
whenever possible.

v

A

Reflections

A

dN
If we assume that whatever
force is being applied constantly
(such as if shape A is the player
in a platformer), we can
approximate how shape A
would slide.

vr is the remaining velocity
component after our
advancement, so we can simply
subtract the component of our
velocity that would go ‘into’ the
wall.

v

A
vr’ = vr - (vr ∙ dN)dN

vr

comp(vr, dN)vr’

Ghost collisions

A

To prevent floating point errors,
physics engines often separate
shapes by a thin ‘skin’. When
using CCD, this skin can cause
our collision normal to be at a
slight angle.

-vr
v

This strategy would launch shape A
slightly into the air, even though the
surface of the two floor shapes is
continuous.

A

A

Ghost collisions

A

We would have to calculate
many advancements, just to
find out that our collision normal
will eventually be perpendicular
to our velocity...

-vr

